Forecasting with VAR models: Fat tails and stochastic volatility

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Volatility Forecasting II: Stochastic Volatility Models and Empirical Evidence

ln(σt) = α + φ(ln(σt−1)− α) + ηt so that ln(σt) is an AR(1) process, where φ is a parameter that represents how quickly volatility gets pulled toward its mean, α. If ηt is normally distributed with mean 0 and variance σ η, then ln(σt) is normally distributed, and σt therefore has a lognormal distribution. To get the unconditional mean and variance of ln(σt), E[ln(σt)] = α + φ(E[ln(σt−1)]− α) + ...

متن کامل

Fat tails and asymmetry in financial volatility models

Although the GARCH model has been quite successful in capturing important empirical aspects of financial data, particularly for the symmetric effects of volatility, it has had far less success in capturing the effects of extreme observations, outliers and skewness in returns. This paper examines the GARCH model under various non-normal error distributions in order to evaluate skewness and lepto...

متن کامل

Leverage, heavy-tails and correlated jumps in stochastic volatility models

This paper proposes the efficient and fast Markov chain Monte Carlo estimation methods for the stochastic volatility model with leverage effects, heavy-tailed errors and jump components, and for the stochastic volatility model with correlated jumps. We illustrate our method using simulated data and analyze daily stock returns data on S&P500 index and TOPIX. Model comparisons are conducted based...

متن کامل

Distribution Forecasting in Nonlinear Models with Stochastic Volatility

This paper investigates the effect of the market return on the value of systematic risk using a semiparametric multivariate GARCH model. We nonparametrically estimate the dynamic conditional beta without any restrictive assumption on the joint density of the data. This model captures movements in systematic risk over time, and we find that the time-varying beta of a stock nonlinearly depends on...

متن کامل

Alternatives to Large Var, Varma and Multivariate Stochastic Volatility Models

In this paper, our proposal is to combine univariate ARMA models to produce a variant of the VARMA model that is much more easily implementable and does not involve certain complications. The original model is reduced to a series of univariate problems and a copula – like term (a mixture-of-normals densities) is introduced to handle dependence. Since the univariate problems are easy to handle b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: International Journal of Forecasting

سال: 2017

ISSN: 0169-2070

DOI: 10.1016/j.ijforecast.2017.03.001